
1.  Introduction
In US cities, the concentrations of many air pollutants have been observed, modeled, and inferred to be 
higher in neighborhoods where residents are primarily people of color and have lower household incomes 
(e.g., Ard, 2015; Bell & Ebisu, 2012; Bullard, 1987; Gwynn & Thurston, 2001; Jerrett et al., 2005; O'Neill 
et al., 2003; Pope et al., 2016; Tessum et al., 2019). These disparities have been shown to cause measurable 
differences in health and life expectancy (Adar & Kaufman, 2007; Di et al., 2017; Lin et al., 2002; Lipfert & 
Wyzga, 2008). Heavy-duty diesel vehicles (HDDVs) are a major driver of air pollution inequalities (Demetil-
lo et al., 2020; Houston et al., 2004, 2008, 2011, 2014; Lena et al., 2002; J. I. Levy et al., 2009; Nguyen & 
Marshall, 2018; Tessum et al., 2021), with HDDV exhaust containing nitrogen oxides (NOx ≡ NO + NO2) 
and a myriad of hazardous co-emissions (HEI,  2010). Source characterization of air quality disparities, 
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the steep spatiotemporal gradients of primary pollutants required to describe intra-urban air pollution 
inequality. Here, we use observations from the recently launched TROPospheric Ozone Monitoring 
Instrument (TROPOMI) satellite sensor and physics-based oversampling to describe nitrogen dioxide 
(NO2) disparities with race, ethnicity, and income in 52 US cities (June 2018–February 2020). We report 
average US-urban census tract-level NO2 inequalities of 28 ± 2% (race-ethnicity and income combined), 
with many populous cities experiencing even greater inequalities. Using observations and inventories, we 
find diesel traffic is the dominant source of NO2 disparities, and that a 62% reduction in diesel emissions 
would decrease race-ethnicity and income inequalities by 37%. We add evidence that TROPOMI resolves 
tract-scale NO2 differences using relationships with urban segregation patterns and spatial variability in 
column-to-surface correlations.

Plain Language Summary People of color and people with lower household incomes 
commonly experience higher levels of air pollution and worsened health burdens from poor air quality 
in US cities. We have lacked direct observations of air pollution across cities with which to describe, 
explain, and guide policymaking on air pollution disparities. Nitrogen dioxide is an important combustion 
pollutant that is co-emitted with many other toxic pollutants, and its concentrations are highly variable 
between neighborhoods. Here, we use nitrogen dioxide measurements collected from space by the 
TROPospheric Ozone Monitoring Instrument (TROPOMI) to describe inequalities within 52 US cities. 
TROPOMI captures greater spatial detail than previously possible, and the near-daily data collection 
allows for interpretation of the specific polluting sources causing nitrogen dioxide inequality, including 
diesel traffic emissions. Because satellite applications for air pollution inequality analyses are nascent, 
we build on our past work to advance understanding of the extent to which TROPOMI resolves inter-
neighborhood nitrogen dioxide differences.
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including from diesel traffic emissions, has been hindered by the lack of city-wide measurements resolving 
steep atmospheric pollutant gradients and providing temporal information useful for source identification.

Nitrogen dioxide (NO2) is a combustion product and a key control over atmospheric oxidation and sec-
ondary pollutant formation. Communities of color and those with lower household incomes often experi-
ence elevated NO2 concentrations and exposures (Clark et al., 2014, 2017; Kerr et al., 2021; Kravitz-Wirtz 
et al., 2016; Rosofsky et al., 2018; Southerland et al., 2021). Epidemiological studies indicate an associa-
tion between NO2 exposure and/or its co-emissions and various adverse health effects (Brook et al., 2007; 
Brunekreef & Holgate, 2002; Burnett et al., 2004). NO2 is a common surrogate for combustion pollution 
generally (I. Levy et al., 2014) and toxins in traffic exhaust specifically (HEI, 2010). HDDVs contribute a 
major portion of urban NOx despite being a small fraction (3%–6%) of the US fleet in terms of distance trav-
eled, as diesel engines produce x7 more NOx per kg fuel burned than gasoline (McDonald et al., 2012, 2018). 
Because its sources are ubiquitous and distributed, NO2 is highly variable in space and time, with typi-
cal distance-decay gradients away from sources of <0.5–2 km (Apte et al., 2017; Choi et al., 2012; Karner 
et al., 2010). A key advantage to focusing air pollution inequality analyses on NO2 is that it has recently 
become possible to observe NO2 daily from space at the scale of a few kilometers using the TROPospheric 
Ozone Monitoring Instrument (TROPOMI).

In Demetillo et al. (2020), we conducted a detailed evaluation of the use of TROPOMI observations to de-
scribe intra-urban NO2 disparities, demonstrating that TROPOMI was indeed well-positioned to inform mul-
tiple aspects of NO2 inequality research in Houston, Texas. We used fine spatial resolution (250 × 500 m2) 
airborne NO2 remote sensing measurements from the GEOstationary Coastal and Air Pollution Events 
Airborne Simulator (GCAS) as a standard (Nowlan et al., 2018), showing that TROPOMI, oversampled to 
0.01° × 0.01° using the physics-based algorithm employed here, resolved equivalent NO2 relative inequali-
ties as GCAS. We assessed the effects of observational uncertainties, retrieval biases, and time averaging on 
NO2 inequality estimates, finding that although their influence led to underestimations in absolute census 
tract-level differences, TROPOMI still captured key variations in NO2 spatial distribution between tracts. 
We also showed that spatial patterns in NO2 columns reflected those at the surface, an essential aspect of 
their application to air quality environmental justice decision-making, and determined that column-based 
inequalities represented those that would be captured at the surface.

Here, we expand this application of TROPOMI, describing NO2 inequality in 52 major US cities and using 
these observations as empirical constraints on the contribution of HDDV traffic to NO2 disparities. We 
report neighborhood-level (census-tract) disparities with race, ethnicity, and income over an almost 2-year 
period (June 2018–February 2020). We analyze weekday-weekend differences from both TROPOMI and 
NOx emissions inventories to quantify the role of diesel traffic in NO2 inequalities. We discuss results sea-
sonally, as the NO2 atmospheric lifetime is shorter in the summer, leading to greater co-location between 
NOx emission sources and NO2 columns than in the winter. We further explore analytical issues in the use 
of TROPOMI for observing tract-scale inequalities in cities where higher spatial resolution measurements 
are not available, investigating inequality relationships with urban segregation patterns, and correlating 
column and surface measurements as a function of their spatial coincidence.

2.  Data and Methods
2.1.  TROPospheric Ozone Monitoring Instrument (TROPOMI)

TROPOMI detects various atmospheric trace gases in the ultraviolet and visible, near-infrared, and short-
wave infrared spectral regions (van Geffen et al., 2018; Veefkind et al., 2012). TROPOMI samples at ∼1:30 
p.m. local time (LT) almost daily from onboard the sun-synchronous Copernicus Sentinel-5 Precursor sat-
ellite. NO2 is retrieved by fitting the 405–465 nm band using an updated OMI DOMINO algorithm based 
on the QA4ECV project (Boersma et  al.,  2011,  2018; Lorente et  al.,  2017; van Geffen et  al.,  2015; Zara 
et al., 2018). Before August 6, 2019, NO2 was retrieved at a nadir spatial resolution of 3.5 × 7 km2. NO2 
tropospheric vertical column densities (TVCDs) have since become available at 3.5 × 5.5 km2. Precision of 
individual TVCDs over polluted scenes is on the order of 30%–60% (Boersma et al., 2018) and dominated by 
uncertainties in air mass factor inputs, including clouds, NO2 profile shape (daily 1° × 1° TM5-MP output) 
(Williams et al., 2017), and surface albedo (monthly 0.5° × 0.5° OMI climatology) (Kleipool et al., 2008).
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We use the TROPOMI Level 2 NO2 product averaged to 0.01° × 0.01° (∼1 × 1 km2) with a physics-based 
oversampling algorithm (Sun et al., 2018). We include cloud-free scenes with qa > 0.75. We calculate mean 
NO2 TVCDs within census tract boundaries for 52 US cities (Table S1) over June 2018–February 2020, sum-
mer (June–August), and winter (December–February), and separately analyze seasonal NO2 TVCDs on 
weekdays and weekends. We define weekdays as Tuesdays–Fridays and weekends as Saturdays–Sundays. 
Monday and Saturday are considered transition days as they are influenced by carryover of yesterday's NO2. 
We remove Mondays from our analysis for this reason but keep Saturdays to improve weekend statistics. 
The mean number of TROPOMI pixels rounded up to the nearest integer in each 0.01° × 0.01° grid are as 
follows (±1 σ standard deviation), 77 ± 24 (summer weekdays), 33 ± 10 (summer weekends), 33 ± 21 (win-
ter weekdays), and 18 ± 11 (winter weekends), with reduced wintertime sampling statistics due to increased 
cloud cover (Table S2). TROPOMI observations are spatially continuous (discretized to 0.001° × 0.001°), giv-
ing NO2 TVCDs within tracts smaller than 1 km2. Cities were selected to represent both the largest US urban 
areas and mid-sized cities giving broad country-wide coverage. Cities are defined as US Census-designated 
“urbanized areas” (UAs) with two exceptions: we separate New York–Newark, NJ–NY–CT along state lines 
into New York City, NY and Newark, NJ and San Francisco–Oakland, CA along the San Francisco Bay into 
San Francisco and Oakland, CA. With a population density threshold of 1,000 people mi−2, UAs represent 
the urban core of metropolitan areas; therefore, results reflect intra-urban rather than urban-suburban dif-
ferences (Demetillo et al., 2020).

2.2.  Population-Weighted Census-Tract NO2 Inequalities

We calculate population-weighted NO2 census tract-averaged TVCDs with race and ethnicity and sort tracts 
by household poverty status or median household income using the US Census database for 2019 (Text S1). 
Race-ethnicity groups are defined following the US Census categories of Black and African Americans, 
Asians, American Indians and Native Alaskans, referred to in the text as Native Americans, and whites, 
excluding people from each racial group identifying as Hispanic or Latino, and Hispanics/Latinos, includ-
ing all races also reporting as Hispanic and/or Latino. Poverty status is defined according to the US Census 
Bureau definition using the household income-to-poverty ratio. Households are categorized as below the 
poverty line if their income is below the US Federal Poverty Guidelines threshold, which scales with the 
number of people per household. Tracts are classified as follows: below the poverty line, >20% of tract 
households at or below an income-to-poverty ratio of one; near poverty, all tract households having an in-
come-to-poverty ratio of 1–1.24; and above poverty, all tract households having an income-to-poverty ratio 
>1.24. We discuss the sensitivity of our results to the 1.24 threshold in Text S1. We combine race-ethnicity 
and income categories, reporting results for Black and African Americans, Asians, Native Americans, and/
or Hispanic/Latino residents in the lowest median income quintile tracts (LINs) and for non-Hispanic/
Latino whites residing in the highest median income quintile tracts (HIWs). Household income quintiles 
are UA specific.

2.3.  NOx Inventories

The Fuel-based Inventory from Vehicle Emissions (FIVE18–19) is a US-wide, 4 × 4 km2 mobile source (on-
road and off-road, gasoline and diesel engines) NOx emissions inventory providing monthly mean hourly 
data on weekdays, Saturdays, and Sundays (Harkins et al., 2021; McDonald et al., 2012, 2018). Emission 
rates are based on publicly available fuel sales reports, road-level traffic counts, and time-resolved weigh-in-
motion traffic counts. Fuel-use uncertainties are determined from differences between fuel sale reports and 
truck travel and traffic count site-selection and sample size. Emissions uncertainties are ±16% and ±17% for 
gasoline and diesel vehicles, respectively, and are derived from a regression analysis of near-road infrared 
remote sensing and tunnel studies (Jiang et al., 2018). Fuel sales reports are provided at the state level, and 
we utilize separate link-level traffic counting data sets of light-duty and heavy-duty traffic (FHWA, 2020), 
downscaling to 4 × 4 km2 following McDonald et al.  (2014). Traffic counting data sets are estimated to 
spatially resolve ∼70% of passenger vehicles and ∼80% of heavy-duty truck traffic. The small remainder 
(20%–30%) is spatially allocated using population as a surrogate. The additional uncertainty associated with 
downscaling traffic results in higher urban-scale emission uncertainties of ±24% for gasoline and ±24% for 
diesel vehicles (McDonald et al., 2014).
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NOx stationary source emissions are from the 2017 National Emissions Inventory (NEI17) updated January 
2021 Version (EPA, 2021). The NEI17 reports annual emission totals of point sources including industrial 
facilities, electricity generating units, oil and gas operations, and airports. Data for smaller industrial facil-
ities, for example, dry cleaners and gas stations, are voluntarily submitted by state agencies and counted as 
area rather than point sources. Here, we focus on annual NEI17 point source emissions and assume they 
exhibit no seasonal or day-to-day variability. A comparison of monthly time-resolved NEI point source NOx 
emissions in July and January indicated differences are indeed small (∼5%). Emissions uncertainties in 
power plants are ±25% (Frost et al., 2006); uncertainties in industrial facilities and other stationary sources 
are larger and assumed to be ±50% (Jiang et al., 2018).

2.4.  Segregation Extent and Structure

We compute three complementary metrics to quantify and describe city-level racial segregation extent and 
structure, with segregation structure classified as clustered (mega-regions of segregation) or patch worked 
(micro-regions of segregation), based on the same 2019 US Census tract-level demographics and UA bound-
aries as the inequality results. We calculate the Shannon Entropy Index, a measure of diversity and preva-
lence. Cities with low entropy have a small number of prominent groups, whereas cities with high entropy 
have roughly equal proportions of groups (Reardon & Firebaugh, 2002). We describe the extent of urban 
segregation through the Information Theory Index (Reardon & Firebaugh, 2002; Theil & Finizza, 1971), 
reflecting the amount of information that an individual's location carries about their demographic group. 
This is an aspatial metric describing the extent of segregation by comparing the demographic representation 
of a geographic unit to the overall city average (Reardon & O'Sullivan, 2004; Roberto, 2015). We compute 
the mean local information density, a measure of the spatial scale of segregation, generating urban seg-
regation structure estimates based on the Fisher information between spatial and demographic variables 
(Chodrow, 2017).

2.5.  Surface NO2* Measurements

We use NO2* surface measurements from 97 non-roadway monitors in 20 UAs identified as having at least 
three NO2 monitoring stations operating during June 2018–February 2020 (Table S3). Almost all of these 
NO2 instruments operate by first decomposing NO2 to NO over a heated molybdenum catalyst and measur-
ing NO by chemiluminescence. NO2 data collected with this technique have a known positive interference 
from oxidized and reduced nitrogen compounds, which also thermally decompose across the catalyst but 
at non-unity efficiency (Dunlea et al., 2007). The nomenclature NO2* is used in acknowledgment of this 
interference. Past research has shown the instruments capture NO2 temporal patterns (Russell et al., 2010) 
and NO2 mixing ratios before substantial oxidation has occurred. Because we are interested in the distance 
dependence of correlations between surface NO2* and the overhead TROPOMI TVCDs, rather than the 
surface NO2 mixing ratios themselves, we do not apply a correction factor to the NO2* data set.

3.  Results and Discussion
3.1.  NO2 Inequality and the Role of Diesel NOx Emissions

Across the 52 cities in our study, representing 130 million residents, population-weighted NO2 TVCDs are 
on average 17 ± 2% higher for Black and African Americans, 19 ± 2% higher for Hispanics/Latinos, 12 ± 2% 
higher for Asians, and 15  ±  2% higher for Native Americans compared to whites (city-level results are 
weighted by urban population size in the averaging). NO2 TVCDs are on average higher for people living 
below (17 ± 2%) and near the poverty line (10 ± 2%) than for those above. When race-ethnicity and income 
are combined, we report an average of 28 ± 2% greater population-weighted NO2 for LINs than HIWs, with 
the highest inequalities observed in Phoenix, Arizona (46 ± 2%), Los Angeles, California (43 ± 1%), and 
Newark, New Jersey (42 ± 2%) (Figure 1). In only one city, San Antonio, Texas, is the sign of LIN-HIW ine-
quality negative over June 2018–February 2020 (−6 ± 3%), although a small number of negative values are 
also observed for the other metrics. In the five most-populated UAs, representing ∼35% of the population, 
NO2 TVCDs are 36 ± 3% higher for LINs compared to HIWs. Absolute NO2 disparities (molecules cm−2) are 
strongly associated with local city-level NO2 pollution (Figure 1h), with a Pearson correlation coefficient 
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Figure 1.  Relative NO2 inequalities (percentage difference between population-weighted NO2 means) for 52 major US cities over all days in June 2018–
February 2020. Marker size reflects the total city population with the smallest markers representing cities with <1.5 million residents and the largest markers 
for cities with >10 million residents. Average NO2 inequalities are shown for Black and African American (a), Hispanic/Latino (b), Asian (c), and Native 
American (d) compared to white residents. Inequalities are also mapped for people living near (e) and below (f) versus above the poverty line and for LINs 
compared to HIWs (g). Displayed mean values for each group are weighted by urban population size. City-averaged NO2 tropospheric vertical column densities 
are shown (h).
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(r) of 0.82 for the combined race-ethnicity and income metric (LIN-HIW). At the same time, relative ine-
qualities (%) are only moderately associated with city-level NO2 (r = 0.46), suggesting that sustained NOx 
emission control will reduce but not eliminate NO2 disparities, a result consistent with work investigating 
trends in NO2 inequality between 2000 and 2010 using land-use regression NO2 data sets (Clark et al., 2017) 
and before and during COVID-19-related activity changes using TROPOMI NO2 TVCDs (Kerr et al., 2021).

To observationally constrain city-wide effective contributions of HDDVs to NO2 disparities, we first com-
pare TROPOMI NO2 inequalities on weekdays and weekends and then contextualize the measured changes 
using NOx emission weekday-weekend patterns predicted by the FIVE18–19 (mobile sources) and NEI17 
(point sources). HDDVs transport commercial goods and their emissions are substantially reduced on 
weekends; at the same time, passenger vehicles (largely gasoline-powered in the United States) and point 
source emissions exhibit much less weekday-weekend variability, although the timing of their emissions 
may change (Marr & Harley, 2002; McDonald et al., 2014; Russell et al., 2012). Off-road diesel engines (e.g., 
construction) also vary weekday to weekend; however, their contribution to total urban NOx emissions is 
considerably smaller than on-road HDDVs. While HDDVs with NOx control are a growing portion of the 
vehicle fleet (Jiang et al., 2018), with reports of declining weekday-weekend NO2 differences (Demetillo 
et al., 2019), HDDVs still emit an important fraction of urban NOx. In the 52 UAs at the focus of this work, 
NO2 TVCDs are an average of 34 ± 17% (1σ standard deviation) lower on weekends than weekdays (June 
2018–February 2020).

Weekday-weekend differences in city-level census-tract absolute TROPOMI NO2 inequalities are fit using a 
weighted bivariate linear regression model (York et al., 2004), with weights derived from errors in city-level 
NO2 for the different residential populations (Table S4). Because NO2 concentrations better correlate with 
NOx emission rates when the NO2 atmospheric lifetime is short, we evaluate correlations separately in 
the summer and winter. We determine the ‘effective' HDDV contribution to inequalities from the regres-
sion slope, which is a combined function of changes in both the total NOx emissions and the nonlinear 
NO2-dependent NO2 chemical lifetime. This method weights cities equally regardless of population. LIN-
HIW disparities decrease by 37 ± 3% on weekends in the summer and 32 ± 2% in the winter (Figure 2a). 
Weekday and weekend inequalities are more strongly correlated in the summer (r  =  0.93) than winter 
(r = 0.51), a function of seasonal differences in NO2 lifetime and reduced wintertime sampling statistics. 
For race-ethnicity and poverty metrics, weekday-weekend differences are 28%–46% in the summer (mapped 
in Figure S2) and more variable in the winter (0%–41%). We observe weekend NO2 decreases to be spatially 
variable within cities and larger in census tracts where residents are primarily people of color or have lower 
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Figure 2.  Absolute differences (molecules cm−2) in population-weighted NO2 TVCDs between LINs and HIWs on weekdays and weekends (a) in the summer 
(black) and winter (light blue). Percent contributions of on-road heavy-duty diesel vehicles (HDDVs) to NOx emission density-based LIN-HIW inequalities 
during summer months from the FIVE18–19 and NEI17 (b). The mean HDDV contribution to emissions inequality, weighted by UA population, is also 
displayed.
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household incomes. Weekday-weekend NO2 differences indicate greater weekend NOx emission reductions 
in the most polluted neighborhoods, as summertime weekend NO2 decreases are 50% larger in the highest 
quintile NO2 census tracts than the lowest quintile NO2 tracts. Comparable weekday-weekend decreases are 
observed in the winter for the highest and lowest quintile NO2 tracts, consistent with longer NO2 lifetimes 
and NO2 TVCDs being more distributed from NOx emission sources in space and time.

Observed weekday-weekend differences in NO2 TVCDs are a function of both the direct change in NOx 
emissions and the subsequent indirect effects on the NOx-dependent NO2 lifetime. Weekday-weekend dif-
ferences in NOx emissions are driven by the fraction of total HDDVs that are parked on weekends, and, to a 
smaller extent, concurrent changes in spatiotemporal patterns of other vehicle types. To attribute measured 
differences in NO2 disparities to a specific reduction in diesel traffic, we compare TROPOMI-based results 
with changes in NOx emission densities (metric tons NOx day−1 km−2), and their resulting inequalities, de-
rived from the FIVE18–19 and NEI17. We first degrade the 0.01° × 0.01° oversampled TROPOMI product 
and FIVE18–19 database (4 × 4 km2) to the same 0.04° × 0.04° grid, average each to underlying census 
tracts, and calculate inequalities as described in Section 2.2. NEI17 sources are represented as points and 
summed within their respective tracts. Tract-level FIVE18–19 and NEI17 are combined and normalized by 
tract areas to produce NOx emissions densities. We analyze inventory-based results, and their comparison 
with TROPOMI, separately in the summer and winter.

Because we expect the coarser 0.04° × 0.04° grid to influence the observed inter-tract differences, we first 
compare tract-averaged disparities based on the 0.01°  ×  0.01° oversampled TVCDs to those determined 
using the 0.04° × 0.04° ΤVCDs. We calculate the normalized mean biases and errors in the absolute and 
relative inequalities separately on summer and winter weekdays, using the 0.01° × 0.01° TROPOMI-based 
results as our reference values. Despite the loss of spatial detail, US-wide normalized mean biases for the 
different inequality metrics are just <1%–6% (Figure S1 and Table S5). We generally calculate slightly higher 
NO2 inequalities with the coarser-resolution NO2 product than the 0.01° × 0.01° TVCDs, suggesting larger 
pixels have the effect of distributing NOx emissions over spatial areas with similar demographic and income 
characteristics. The greatest city-level normalized mean biases (8%–22%) are observed in Oakland, San Die-
go, and San Francisco, CA, all cities that encompass narrow geographical areas along coasts that may even 
challenge the satellite analysis at 0.01° × 0.01°. While normalized mean biases are low on average across 
UAs, normalized mean errors for each metric are higher (3%–13%), indicating inaccuracies are larger in in-
dividual cities because of the loss of spatial resolution. That said, we find the 0.04° × 0.04° TVCDs give com-
parable weekday-weekend NO2 differences to the 0.01° × 0.01° product for all inequality metrics (Table S4). 
Coarse-resolution TVCDs yield weekday-weekend decreases in LIN-HIW disparities of 37 ± 4% and 38 ± 2% 
in the summer and winter, respectively, equaling results with the 0.01° × 0.01° TVCDs within uncertainties 
in the summer. Agreement is similar for the other metrics, indicating data sets resolved to 0.04° × 0.04° still 
capture tract-scale patterns in the intra-urban spatiotemporal distribution.

Using the FIVE18–19 and NEI17, we calculate mean summertime weekday-weekend reductions in LIN-
HIW disparities in NOx emissions densities of 40 ± 4% (includes all source sectors), in agreement with 
TROPOMI-based weekday-weekend differences using the 0.04° × 0.04° TVCDs within associated uncer-
tainties (Table S4). For race-ethnicity and poverty status, weekday to weekend decreases in emissions dis-
parities equal empirical estimates to within 3%–15%, with the inventories generally predicting comparable 
or slightly larger weekend reductions than TROPOMI. There is larger disagreement between NO2 TVCDs 
and the inventories in the winter, with TROPOMI weekday-weekend differences for some race-ethnicity 
metrics being much smaller than estimated by the FIVE18–19 and NEI17. These wintertime discrepancies 
are consistent with seasonal patterns in NO2 mesoscale transport (greater day-to-day carryover), farther NO2 
displacement away from NOx sources, and more NOx-suppressed chemistry, but may also be related to the 
reduced wintertime sampling statistics on weekdays and weekends.

Finally, we partition NOx emission inequalities and their weekday-weekend differences by source sector, fo-
cusing on the role of HDDVs. We limit the analysis to summer months, when NO2 TVCDs are most respon-
sive to NOx emissions changes. On weekdays, on-road HDDVs cause on average (unweighted by UA popula-
tion) 45 ± 5% of LIN-HIW NOx emissions-based inequalities (Figure 2b and Table S7). The remainder is due 
to on-road gasoline-powered vehicles (38 ± 5%), gasoline and diesel off-road vehicles (13 ± 6%), and station-
ary sources (4 ± 6%), largely electricity generation. HDDVs contribute significantly to mean (weighted by 
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UA population) NOx emissions inequalities for Black and African Americans (63 ± 13%), Hispanics/Latinos 
(52 ± 10%), Asians (36 ± 7%), and Native Americans (62 ± 12%) and for people living below and near the 
poverty line (56 ± 11%) (Figure S3). While HDDVs are the largest source of UA-level disparities, stationary 
sources may be more important across more suburban metropolitan areas. Regulatory controls on gaso-
line-powered vehicles and electricity generation between 2000 and 2010 decreased absolute, although not 
relative, NO2 inequalities from these sources across the United States (Clark et al., 2017), and an analysis 
exploiting COVID-19-related reductions in passenger vehicle traffic suggest HDDV emissions dominate 
relative NO2 inequalities in recent years (Kerr et al., 2021). Based on the FIVE18–19, summertime HDDV 
NOx emission densities decrease by 62 ± 2% on weekends, with diesel traffic still causing 26 ± 6% of LIN-
HIW NOx emissions inequalities on weekends. Therefore, if the entire observed effective weekday-weekend 
change in NO2 TVCD disparities is caused by HDDVs, then a 62 ± 2% reduction in summertime weekday 
on-road HDDV emissions leads to a 37 ± 3% decrease in NO2 LIN-HIW disparities. While we find that on 
average LIN-HIW NOx emission densities from the other major source of emissions-based inequalities, 
gasoline-powered vehicles, decrease by 10% weekday to weekend, NOx emission inequalities change by less 
than 1% (Table S6), indicating that weekday-weekend differences in disparities are driven by HDDVs. If 
HDDV emissions were fully controlled—or their distribution was equalized—summer weekday LIN-HIW 
NOx emissions inequalities would decrease by almost 50%. Likewise, elimination of on-road HDDV inequal-
ities would lower disparities with race-ethnicity and poverty by 59% and 49%, respectively (Table S7). These 
predicted changes represent upper bounds, as US urban chemical oxidation is trending toward NOx-limita-
tion (Laughner & Cohen, 2019).

3.2.  Resolving Census Tract-Scale Inequality From Space

Application of satellite remote sensing to NO2 inequality requires demonstration that both oversampled 
TROPOMI TVCDs capture inter-census-tract differences and that spatial patterns in NO2 columns reflect 
those that would be measured at the surface. In Demetillo et al. (2020), we found TROPOMI-based results 
were comparable to NO2 tract-scale disparities determined using the high spatial resolution airborne sensor 
GCAS in Houston, TX, and used in situ NO2 aircraft profiles and surface data to show the spatial patterns in 
NO2 columns reflected those at the surface. Because we do not have aircraft measurements for the 52 cities 
in our domain, we instead test the dependence of tract-level NO2 inequalities on spatial heterogeneities in 
UA demographics. To evaluate relationships between column and surface NO2 spatial distributions, we ana-
lyze Pearson correlation coefficients of TVCDs and surface NO2* mixing ratios as a function of observation 
proximity.

Because of historical and contemporary racial discrimination, US cities are segregated by race, ethnici-
ty, and income—without segregation, air pollution disparities would not be possible. We find city-level 
race-ethnicity NO2 inequalities are weakly associated with overall segregation extent (r = 0.35; p = 0.010) 
(Figure S4), suggesting UAs are sufficiently segregated to support intra-urban NO2 disparities, and those 
NO2 inequalities are more sensitive to changes in overall NO2 pollution level. Segregation structure can 
be characterized along an axis between clustered segregation, where segregated tracts spatially aggregate 
into larger contiguous regions, and patch-worked segregation, where the spatial scale of segregated tracts 
is small and adjacent tracts are more likely to have different demographic populations (Chodrow, 2017; Lee 
et al., 2008; Reardon & O'Sullivan, 2004). For reference, Atlanta, GA typifies clustering, while New York 
City, NY exhibits patch-worked segregation (Figure S5). This structural distinction is informative for the ap-
plication of TROPOMI, as the 0.01° × 0.01° spatial resolution is coarser than many densely populated tracts 
and oversampling has the effect of smoothing spatial gradients through averaging. Because NO2 spatially 
varies at sub-census-tract scales (e.g., Messier et al., 2018; Miller et al., 2020), if the tract unit challenges 
the TROPOMI resolution, NO2 disparities would positively correlate with increased clustering, providing a 
test of the TROPOMI resolution at the tract scale. Here, we compare race-ethnicity summer weekday NO2 
inequalities with urban race-ethnicity segregation structure (Figure S4). We find that city-level race-eth-
nicity NO2 disparities are uncorrelated with segregation structure (r = 0.07, p = 0.619) and not positively 
associated with clustering, implying TROPOMI is indeed able to resolve inter-tract differences even when 
segregated tracts do not spatially aggregate. Past research has shown city-level NO2 co-varies with urban 
form and density (Bechle et al., 2011, 2017; Larkin et al., 2017). However, because we focus on the urban 
core, we cross-cut this variability, largely excluding urban-suburban form and density gradients.
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To assess whether spatial distributions in NO2 TVCDs reflect those at the surface, we compare NO2 columns 
and mean daytime (12−3 p.m. LT) NO2* surface mixing ratios as a function of the spatial proximity between 
tract-averaged TVCDs and the NO2* nearest monitor (Figure S6) (Bechle et al., 2013; Demetillo et al., 2020). 
Census tract coverage is spatially continuous; however, there are instances where no tracts are identified 
within a given 1-km interval (i). Here, tract-averaged TVCDs are set equal to the column value in the i + 
1 distance interval, or infrequently the i + 2 interval. This largely occurs when comparing directly over-
head tract-averaged TVCDs, so we limit the correction to columns ≤1 km from the nearest NO2* monitor. 
The highest mean r values are observed when TVCDs and surface measurements are spatially coincident, 
0.69 ± 0.05 in the summer and 0.60 ± 0.09 in the winter. However, we anticipate that r values (≤1 km) would 
be even higher if comparisons were instead based on the 0.01° × 0.01° product. At distances of 6–10 km, r 
values fall to 0.42 ± 0.07 (summer) and 0.30 ± 0.09 (winter). These results indicate that TROPOMI TVCDs 
capture similar spatial patterns as measured at the surface, but also highlight that the NO2* network is too 
spatially sparse to collect locally relevant NO2* levels for most residents.

4.  Summary
We use TROPOMI observations to quantify NO2 inequality in 52 major US cities over June 2018–Febru-
ary 2020. We report average census tract-level population-weighted NO2 disparities for Black and African 
Americans (17 ± 2%), Hispanics/Latinos (19 ± 2%), Asians (12 ± 2%), and Native Americans (15 ± 2%) 
compared to non-Hispanic/Latino whites, and for people living below (17 ± 2%) and near the poverty line 
(10 ± 2%) compared to those living above. Higher inequalities are found when race-ethnicity and income 
are combined, with 28 ± 2% greater population-weighted NO2 for LINs than HIWs. For all metrics, much 
greater disparities are observed in some larger US cities. Absolute NO2 inequalities are strongly associated 
with UA NO2 pollution; however, correlations between relative inequalities and city-level NO2 are weaker. 
We use weekday-weekend differences in NO2 TVCDs as empirical constraints on the impact of regulating 
HDDV NOx emissions, showing that a 62% reduction in on-road diesel traffic leads to a 37% decrease in 
LIN-HIW inequalities. While HDDV emissions contribute to the majority of NO2 inequalities—63 ± 13% 
for Black and African Americans, 52 ± 10% for Hispanics/Latinos, 36 ± 7% for Asians, 62 ± 12% for Native 
Americans, and 56 ± 11% for people living below or near the poverty line—controlling them entirely would 
not eliminate NO2 disparities. Finally, we provide additional evidence that oversampled TROPOMI obser-
vations resolve key patterns in the census tract-scale NO2 distribution with NO2 disparities being invariant 
with segregation structure and that spatial patterns in directly overhead NO2 columns reflect surface-level 
NO2 spatial patterns.

Data Availability Statement
TROPOMI NO2 Level 2 TVCDs can be accessed at https://earthdata.nasa.gov/earth-observation-data. EPA 
NO2* surface data can be downloaded at https://aqs.epa.gov/aqsweb/airdata/download_files.html. The US 
Census database is accessible from the IPUMS National Historical Geographic Information System (https://
www.nhgis.org) and census tract polygons are available as TIGER/Line shapefiles from the Data.gov library 
(https://www.census.gov/cgi-bin/geo/shapefiles/index.php). The NEI17 can be accessed at https://www.
epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data and the FIVE18–19 is avail-
able for download at the NOAA Chemical Sciences Laboratory COVID-AQS database (https://csl.noaa.gov/
groups/csl7/measurements/2020covid-aqs/emissions/).
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